
JavaScript
Codewithsahal.com

Page 1 of 137
Phone: +447572126142

JavaScript – Part 1

Lesson 01: Introduction

 JavaScript is the world's most popular programming language.

 JavaScript is the programming language of the Web.

 JavaScript is easy to learn.

 This tutorial will teach you JavaScript from basic to advance.

Why Study JavaScript?

JavaScript is one of the 3 languages all web developers must learn:

 1. HTML to define the content of web pages

 2. CSS to specify the layout of web pages

 3. JavaScript to program the behavior of web pages

This tutorial covers every version of JavaScript:

 The Original JavaScript ES1 ES2 ES3 (1997-1999)

 The First Main Revision ES5 (2009)
 The Second Revision ES6 (2015)

 The Yearly Additions (2016, 2017, 2018)

Commonly Asked Questions

 How do I get JavaScript?

 Where can I download JavaScript?
 How much do full stack JavaScript developers make?

 Are JavaScript coders in demand?
 Who is father of JavaScript? Brendan Eich

https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp

JavaScript
Codewithsahal.com

Page 2 of 137
Phone: +447572126142

Lesson 02: JavaScript Can Change HTML Content (Tags)

Text Editor:

 Download Visual Studio.

One of many JavaScript HTML methods is getElementById()

Example:

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can change HTML content.</p>

<button type="button" onclick='document.getElementById("demo").innerHTML = "Hello

JavaScript!"'>Click Me!</button>

</body>

</html>

Note:

JavaScript accepts both double and single quotes:

JavaScript
Codewithsahal.com

Page 3 of 137
Phone: +447572126142

Lesson 03. JavaScript Can Change HTML Attribute Values

In this example JavaScript changes the value of the src (source) attribute of

an tag:

Example:

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p>JavaScript can change HTML attribute values.</p>

<p>In this case JavaScript changes the value of the src (source) attribute of an

image.</p>

<button onclick="document.getElementById('myImage').src='on.png'">Turn on

the light</button>

<button onclick="document.getElementById('myImage').src='off.png'">Turn

off the light</button>

</body>

</html>

JavaScript
Codewithsahal.com

Page 4 of 137
Phone: +447572126142

Lesson 04. JavaScript Can Change HTML Styles (CSS)

Example:

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can change the style of an HTML element.</p>

<button type="button" onclick="document.getElementById('demo').style.fontSize='35px'">Click

Me!</button>

</body>

</html>

Lesson 05: JavaScript Can Hide HTML Elements (Tags)

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can hide HTML elements.</p>

<button type="button" onclick="document.getElementById('demo').style.display='none'">Click

Me!</button>

</body>

</html>

JavaScript
Codewithsahal.com

Page 5 of 137
Phone: +447572126142

JavaScript Can Show HTML Elements

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p>JavaScript can show hidden HTML elements.</p>

<p id="demo" style="display:none">Hello JavaScript!</p>

<button type="button" onclick="document.getElementById('demo').style.display='block'">Click

Me!</button>

</body>

</html>

JavaScript
Codewithsahal.com

Page 6 of 137
Phone: +447572126142

Lesson 06: Where to (Head or Body)

The <script> Tag

In HTML, JavaScript code is inserted between <script> and </script> tags.

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript in Body</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "My First JavaScript";

</script>

</body>

</html>

Note:

Old JavaScript examples may use a type attribute: <script
type="text/javascript">.

The type attribute is not required. JavaScript is the default scripting language in

HTML.

JavaScript
Codewithsahal.com

Page 7 of 137
Phone: +447572126142

JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or

in both.

JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section of an HTML

page.

The function is invoked (called) when a button is clicked:

<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

 document.getElementById("demo").innerHTML = "Paragraph changed.";

}</script></head>

<body>

<h2>Demo JavaScript in Head</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

</body>

JavaScript
Codewithsahal.com

Page 8 of 137
Phone: +447572126142

</html>

JavaScript in <body>

In this example, a JavaScript function is placed in the <body> section of an HTML

page.

The function is invoked (called) when a button is clicked:

<!DOCTYPE html>

<html>

<body>

<h2>Demo JavaScript in Body</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<script>

function myFunction() {

 document.getElementById("demo").innerHTML = "Paragraph changed.";

}

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 9 of 137
Phone: +447572126142

Lesson 07: Where to (External JavaScript)

External JavaScript Advantages

Placing scripts in external files has some advantages:

 It separates HTML and code
 It makes HTML and JavaScript easier to read and maintain

 Cached JavaScript files can speed up page loads

Scripts can also be placed in external files:

External file: myScript.js

External scripts are practical when the same code is used in many different web
pages.

JavaScript files have the file extension .js.

To use an external script, put the name of the script file in the src (source)

attribute of a <script> tag:

Example

<script src=”myScript.js”> </script>

JavaScript
Codewithsahal.com

Page 10 of 137
Phone: +447572126142

<!DOCTYPE html>

<html>

 <head>

 </head>

<body>

<h2>Demo External JavaScript</h2>

<script>

 document.write("I am a testing External JavaScript");

</script>

</body>

</html>

Example2:

<html>

<body>

 <h2>Demo External JavaScript</h2>

 <script src="05.1.myScript.js"> </script>

</body>

</html>

Note:

Create External file .js

JavaScript
Codewithsahal.com

Page 11 of 137
Phone: +447572126142

Type this code and save .js

Document.write(“I am a testing External JavaScript”);

Note:

To add several script files to one page - use several script tags:

Example

<script src=”myScript1.js”> </script>

<script src=”myScript2.js”> </script>

External References

An external script can be referenced in 3 different ways:

 With a full URL (a full web address)

 With a file path (like /js/)
 Without any path

This example uses a full URL to link to myScript.js:

<script src="https://www.sahalsoftware.com/js/myScript.js"></script>

This example uses a file path to link to myScript.js:

<script src=”/js/myScript.js”> </script>

JavaScript
Codewithsahal.com

Page 12 of 137
Phone: +447572126142

This example uses no path to link to myScript.js:

Example

<script src=”myScript.js”> </script>

Lesson 08: JavaScript Display Possibilities

JavaScript can "display" data in different ways:

 Writing into an HTML element, using innerHTML.
 Writing into the HTML output using document.write().
 Writing into an alert box, using window.alert().
 Writing into the browser console, using console.log().

Using innerHTML

To access an HTML element, JavaScript can use

the document.getElementById(id) method.

The id attribute defines the HTML element. The innerHTML property defines the

HTML content:

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My First Paragraph.</p>

JavaScript
Codewithsahal.com

Page 13 of 137
Phone: +447572126142

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 + 6;

</script>

</body>

</html>

Note:

Changing the innerHTML property of an HTML element is a common way to
display data in HTML.

Using document.write()

For testing purposes, it is convenient to use document.write():

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<p>Never call document.write after the document has finished loading.

It will overwrite the whole document.</p>

<script>

JavaScript
Codewithsahal.com

Page 14 of 137
Phone: +447572126142

document.write(5 + 6);

</script>

</body>

</html>

Note:

Using document.write() after an HTML document is loaded, will delete all
existing HTML:

Example:

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<button type="button" onclick="document.write(5 + 6)">Try it</button>

</body>

</html>

Note:

The document.write() method should only be used for testing.

JavaScript
Codewithsahal.com

Page 15 of 137
Phone: +447572126142

Using window.alert()

You can use an alert box to display data:

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<script>

window.alert(5 + 6);

</script>

</body>

</html>

Note:

You can skip the window keyword.

JavaScript
Codewithsahal.com

Page 16 of 137
Phone: +447572126142

In JavaScript, the window object is the global scope object, which means that
variables, properties, and methods by default belong to the window object. This

also means that specifying the window keyword is optional:

Using console.log()

For debugging purposes, you can call the console.log() method in the browser

to display data.

<!DOCTYPE html>

<html>

<body>

<h2>Activate Debugging</h2>

<p>F12 on your keyboard will activate debugging.</p>

<p>Then select "Console" in the debugger menu.</p>

<p>Then click Run again.</p>

<script>

console.log(5 + 6);

</script>

</body>

</html>

JavaScript Print

JavaScript does not have any print object or print methods.

JavaScript
Codewithsahal.com

Page 17 of 137
Phone: +447572126142

You cannot access output devices from JavaScript.

The only exception is that you can call the window.print() method in the browser

to print the content of the current window.

<!DOCTYPE html>

<html>

<body>

<h2>The window.print() Method</h2>

<p>Click the button to print the current page.</p>

<button onclick="window.print()">Print this page</button>

</body>

</html>

Lesson 09: JavaScript Statements

JavaScript Programs

A computer program is a list of "instructions" to be "executed" by a computer.

In a programming language, these programming instructions are

called statements.

A JavaScript program is a list of programming statements.

JavaScript
Codewithsahal.com

Page 18 of 137
Phone: +447572126142

JavaScript Statements

JavaScript statements are composed of:

Values, Operators, Expressions, Keywords, and Comments.

This statement tells the browser to write "Hello Sahalsoftware." inside an HTML
element with id="demo":

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>In HTML, JavaScript statements are executed by the browser.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello Sahalsoftware.";

</script>

</body>

</html>

Note:

Most JavaScript programs contain many JavaScript statements.

The statements are executed, one by one, in the same order as they are
written.

JavaScript programs (and JavaScript statements) are often called JavaScript
code.

JavaScript
Codewithsahal.com

Page 19 of 137
Phone: +447572126142

Semicolons ;

Semicolons separate JavaScript statements.

Add a semicolon at the end of each executable statement:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>JavaScript statements are separated by semicolons.</p>

<p id="demo1"></p>

<script>

let a, b, c;

a = 5;

b = 6;

c = a + b;

document.getElementById("demo1").innerHTML = c;

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 20 of 137
Phone: +447572126142

When separated by semicolons, multiple statements on one line are allowed:

a = 5; b = 6; c = a + b;

Same as:
a = 5; // Assign the value 5 to a
b = 6; // Assign the value 6 to b
c = a + b; // Assign the sum of a and b to c

Note:

Sometimes, you might see examples without semicolons.

Ending statements with semicolon is not required, but highly
recommended.

Lesson 10. JavaScript White Space

JavaScript ignores multiple spaces. You can add white space to your script to

make it more readable.

The following lines are equivalent:

Let person = “Ahmed”

A good practice is to put spaces around operators (= + - * /):

Let x = y + z;

JavaScript Line Length and Line Breaks

For best readability, programmers often like to avoid code lines longer than 80

characters.

JavaScript
Codewithsahal.com

Page 21 of 137
Phone: +447572126142

If a JavaScript statement does not fit on one line, the best place to break it is
after an operator:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>

The best place to break a code line is after an operator or a comma.

</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

"Hello Sahalsoftware!";

</script>

</body>

</html>

Lesson 11. JavaScript Code Blocks

JavaScript statements can be grouped together in code blocks, inside curly

brackets {...}.

The purpose of code blocks is to define statements to be executed together.

JavaScript
Codewithsahal.com

Page 22 of 137
Phone: +447572126142

One place you will find statements grouped together in blocks, is in JavaScript
functions:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>JavaScript code blocks are written between { and }</p>

<button type="button" onclick="myFunction()">Click Me!</button>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

function myFunction() {

 document.getElementById("demo1").innerHTML = "Hello Mohamed!";

 document.getElementById("demo2").innerHTML = "How are you?";

}

</script>

</body>

</html>

Lesson 12: JavaScript Comments
JavaScript comments can be used to explain JavaScript code, and to make it
more readable.

JavaScript comments can also be used to prevent execution, when testing

alternative code.

JavaScript
Codewithsahal.com

Page 23 of 137
Phone: +447572126142

Single Line Comments

Single line comments start with //.

Any text between // and the end of the line will be ignored by JavaScript (will

not be executed).

This example uses a single-line comment before each code line:

<!DOCTYPE html>

<html>

<body>

<h1 id="myH"></h1>

<p id="myP"></p>

<script>

// Change heading:

document.getElementById("myH").innerHTML = "JavaScript Comments";

// Change paragraph:

document.getElementById("myP").innerHTML = "My first paragraph.";

</script>

</body>

</html>

This example uses a single line comment at the end of each line to explain the
code:

let x = 5; // Declare x, give it the value of 5
let y = x + 2; // Declare y, give it the value of x + 2

JavaScript
Codewithsahal.com

Page 24 of 137
Phone: +447572126142

Multi-line Comments

Multi-line comments start with /* and end with */.

Any text between /* and */ will be ignored by JavaScript.

This example uses a multi-line comment (a comment block) to explain the

code:

<!DOCTYPE html>

<html>

<body>

<h1 id="myH"></h1>

<p id="myP"></p>

<script>

/*

The code below will change

the heading with id = "myH"

and the paragraph with id = "myP"

*/

document.getElementById("myH").innerHTML = "JavaScript Comments";

document.getElementById("myP").innerHTML = "My first paragraph.";

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 25 of 137
Phone: +447572126142

Using Comments to Prevent Execution

Using comments to prevent execution of code is suitable for code testing.

Adding // in front of a code line changes the code lines from an executable line

to a comment.

This example uses // to prevent execution of one of the code lines:

//document.getElementById("myH").innerHTML = "My First Page";

document.getElementById("myP").innerHTML = "My first paragraph.";

This example uses a comment block to prevent execution of multiple lines:

/*

document.getElementById("myH").innerHTML = "My First Page";

document.getElementById("myP").innerHTML = "My first paragraph.";

*/

Lesson 13: JavaScript Variables

What are Variables?

Variables are containers for storing data (storing data values).

3 Ways to Declare a JavaScript Variable:

 Using var
 Using let

JavaScript
Codewithsahal.com

Page 26 of 137
Phone: +447572126142

 Using const

In this example, x, y, and z, are variables, declared with the var keyword:

var x = 5;

var y = 6;

var z = x + y;

In this example, x, y, and z, are variables, declared with the let keyword:

let x = 5;
let y = 6;
let z = x + y;

In this example, x, y, and z, are variables, declared with the const keyword:

const x = 5;
const y = 6;
const z = x + y;

From all the examples above, you can guess:

 x stores the value 5
 y stores the value 6

 z stores the value 11

When to Use JavaScript var?

Always declare JavaScript variables with var, let, or const.

The var keyword is used in all JavaScript code from 1995 to 2015.

The let and const keywords were added to JavaScript in 2015.

If you want your code to run in older browser, you must use var.

JavaScript
Codewithsahal.com

Page 27 of 137
Phone: +447572126142

When to Use JavaScript const?

If you want a general rule: always declare variables with const.

If you think the value of the variable can change, use let.

Just Like Algebra

Just like in algebra, variables hold values:

Let x = 5;

Let y = 6;

Just like in algebra, variables are used in expressions:

Let z = x + y;

From the example above, you can guess that the total is calculated to be 11.

Note

Variables are containers for storing values.

LET

JavaScript
Codewithsahal.com

Page 28 of 137
Phone: +447572126142

The let keyword was introduced in ES6 (2015).

Variables defined with let cannot be Redeclared.

Variables defined with let must be Declared before use.

Variables defined with let have Block Scope.

Cannot be Redeclared

Variables defined with let cannot be redeclared.

You cannot accidentally redeclare a variable.

Example:

let x = "John Doe";

let x = 0;

// SyntaxError: 'x' has already been declared

With var you can:

var x = "John Doe";

var x = 0;

Block Scope

Before ES6 (2015), JavaScript had only Global Scope and Function Scope.

ES6 introduced two important new JavaScript keywords: let and const.

These two keywords provide Block Scope in JavaScript.

https://www.w3schools.com/js/js_es6.asp

JavaScript
Codewithsahal.com

Page 29 of 137
Phone: +447572126142

Variables declared inside a { } block cannot be accessed from outside the
block:

Example

{

 Let x = 2;

}

// x can NOT be used here

Variables declared with the var keyword can NOT have block scope.

Variables declared inside a { } block can be accessed from outside the block.

Example

{

 var x = 2;

}

// x can be used here

Redeclaring Variables

Redeclaring a variable using the var keyword can impose problems.

JavaScript
Codewithsahal.com

Page 30 of 137
Phone: +447572126142

Redeclaring a variable inside a block will also redeclare the variable outside the
block:

Example

<!DOCTYPE html>

<html>

<body>

<h2>Redeclaring a Variable Using var</h2>

<p id="demo"></p>

<script>

var x = 10;

// Here x is 10

{

var x = 2;

// Here x is 2

}

// Here x is 2

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

Redeclaring a variable using the let keyword can solve this problem.

JavaScript
Codewithsahal.com

Page 31 of 137
Phone: +447572126142

Redeclaring a variable inside a block will not redeclare the variable outside the
block:

Example

<!DOCTYPE html>

<html>

<body>

<h2>Redeclaring a Variable Using let</h2>

<p id="demo"></p>

<script>

let x = 10;

// Here x is 10

{

 let x = 2;

 // Here x is 2

}

// Here x is 10

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 32 of 137
Phone: +447572126142

Browser Support

The let keyword is not fully supported in Internet Explorer 11 or earlier.

Re-declaring - var

Redeclaring a JavaScript variable with var is allowed anywhere in a program:

Example:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript let</h2>

<p>Redeclaring a JavaScript variable with var is allowed anywhere in
a program:</p>

<p id="demo"></p>

<script>

var x = 2;

// Now x is 2

var x = 3;

// Now x is 3

document.getElementById("demo").innerHTML = x;

JavaScript
Codewithsahal.com

Page 33 of 137
Phone: +447572126142

</script>

</body>

</html>

With let, redeclaring a variable in the same block is NOT allowed:

var x = 2; // Allowed
let x = 3; // Not allowed

{
let x = 2; // Allowed
let x = 3; // Not allowed
}

{
let x = 2; // Allowed
var x = 3; // Not allowed
}

Redeclaring a variable with let, in another block, is allowed:

Example

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript let</h2>

<p>Redeclaring a variable with let, in another scope, or in another

block, is allowed:</p>

JavaScript
Codewithsahal.com

Page 34 of 137
Phone: +447572126142

<p id="demo"></p>

<script>

let x = 2; // Allowed

{

 let x = 3; // Allowed

}

{

 let x = 4; // Allowed

}

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

Let Hoisting

Variables defined with var are hoisted to the top and can be initialized at any

time.

Meaning: You can use the variable before it is declared:

JavaScript
Codewithsahal.com

Page 35 of 137
Phone: +447572126142

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Hoisting</h2>

<p>With var, you can use a variable before it is declared:</p>

<p id="demo"></p>

<script>

carName = "Volvo";

document.getElementById("demo").innerHTML = carName;

var carName;

</script>

</body>

</html>

Variables defined with let are also hoisted to the top of the block, but not

initialized.

JavaScript
Codewithsahal.com

Page 36 of 137
Phone: +447572126142

Meaning: Using a let variable before it is declared will result in

a ReferenceError:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Hoisting</h2>

<p>With let, you cannot use a variable before it is declared.</p>

<p id="demo"></p>

<script>

try {

 carName = "Saab";

 let carName = "Volvo";

}

catch(err) {

 document.getElementById("demo").innerHTML = err;

}

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 37 of 137
Phone: +447572126142

Const

The const keyword was introduced in ES6 (2015).

Variables defined with const cannot be Redeclared.

Variables defined with const cannot be Reassigned.

Variables defined with const have Block Scope.

Cannot be Reassigned

A const variable cannot be reassigned:

<!DOCTYPE html>

<html>

<body>

https://www.w3schools.com/js/js_es6.asp

JavaScript
Codewithsahal.com

Page 38 of 137
Phone: +447572126142

<h2>JavaScript const</h2>

<p id="demo"></p>

<script>

try {

 const PI = 3.141592653589793;

 PI = 3.14;

}

catch (err) {

 document.getElementById("demo").innerHTML = err;

}

</script>

</body>

</html>

Must be Assigned

JavaScript const variables must be assigned a value when they are declared:

JavaScript
Codewithsahal.com

Page 39 of 137
Phone: +447572126142

Correct

const PI = 3.14159265359

const PI;
PI = 3.14159265359;

When to use JavaScript const?

As a general rule, always declare a variable with const unless you know that the

value will change.

Use const when you declare:

 A new Array
 A new Object

 A new Function
 A new RegExp

Constant Objects and Arrays

The keyword const is a little misleading.

It does not define a constant value. It defines a constant reference to a value.

Because of this you can NOT:

 Reassign a constant value

 Reassign a constant array
 Reassign a constant object

But you CAN:

 Change the elements of constant array

 Change the properties of constant object

JavaScript
Codewithsahal.com

Page 40 of 137
Phone: +447572126142

Constant Arrays

You can change the elements of a constant array:

Example:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript const</h2>

<p>Declaring a constant array does NOT make the elements
unchangeable:</p>

<p id="demo"></p>

<script>

// Create an Array:

const cars = ["Saab", "Volvo", "BMW"];

// Change an element:

cars[0] = "Toyota";

JavaScript
Codewithsahal.com

Page 41 of 137
Phone: +447572126142

// Add an element:

cars.push("Audi");

// Display the Array:

document.getElementById("demo").innerHTML = cars;

</script>

</body>

</html>

But you can NOT reassign the array:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript const</h2>

<p>You can NOT reassign a constant array:</p>

<p id="demo"></p>

<script>

JavaScript
Codewithsahal.com

Page 42 of 137
Phone: +447572126142

try {

 const cars = ["Saab", "Volvo", "BMW"];

 cars = ["Toyota", "Volvo", "Audi"];

}

catch (err) {

 document.getElementById("demo").innerHTML = err;

}

</script>

</body>

</html>

Constant Objects

You can change the properties of a constant object:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript const</h2>

<p>Declaring a constant object does NOT make the objects properties

unchangeable:</p>

JavaScript
Codewithsahal.com

Page 43 of 137
Phone: +447572126142

<p id="demo"></p>

<script>

// Create an object:

const car = {type:"Fiat", model:"500", color:"white"};

// Change a property:

car.color = "red";

// Add a property:

car.owner = "Johnson";

// Display the property:

document.getElementById("demo").innerHTML = "Car owner is " + car.owner;

</script>

</body>

</html>

But you can NOT reassign the object:

<!DOCTYPE html>

<html>

JavaScript
Codewithsahal.com

Page 44 of 137
Phone: +447572126142

<body>

<h2>JavaScript const</h2>

<p>You can NOT reassign a constant object:</p>

<p id="demo"></p>

<script>

try {

 const car = {type:"Fiat", model:"500", color:"white"};

 car = {type:"Volvo", model:"EX60", color:"red"};

}

catch (err) {

 document.getElementById("demo").innerHTML = err;

}

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 45 of 137
Phone: +447572126142

Browser Support

The const keyword is not supported in Internet Explorer 10 or earlier.

Block Scope - Const

Declaring a variable with const is similar to let when it comes to Block Scope.

The x declared in the block, in this example, is not the same as the x declared
outside the block:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScropt const variables has block scope</h2>

<p id="demo"></p>

<script>

const x = 10;

// Here x is 10

{

JavaScript
Codewithsahal.com

Page 46 of 137
Phone: +447572126142

const x = 2;

// Here x is 2

}

// Here x is 10

document.getElementById("demo").innerHTML = "x is " + x;

</script>

</body>

</html>

Redeclaring

Redeclaring a JavaScript var variable is allowed anywhere in a program:

Example

var x = 2; // Allowed

var x = 3; // Allowed

x = 4; // Allowed

Redeclaring an existing var or let variable to const, in the same scope, is not

allowed:

var x = 2; // Allowed
const x = 2; // Not allowed

{
let x = 2; // Allowed

JavaScript
Codewithsahal.com

Page 47 of 137
Phone: +447572126142

const x = 2; // Not allowed
}

{
const x = 2; // Allowed
const x = 2; // Not allowed
}

Reassigning an existing const variable, in the same scope, is not allowed:

Example

const x = 2; // Allowed

x = 2; // Not allowed

var x = 2; // Not allowed

let x = 2; // Not allowed

const x = 2; // Not allowed

{

 const x = 2; // Allowed

 x = 2; // Not allowed

 var x = 2; // Not allowed

 let x = 2; // Not allowed

 const x = 2; // Not allowed

}

Redeclaring a variable with const, in another scope, or in another block, is

allowed:

Example

const x = 2; // Allowed

{

 const x = 3; // Allowed

}

{

JavaScript
Codewithsahal.com

Page 48 of 137
Phone: +447572126142

 const x = 4; // Allowed

}

Const Hoisting

Variables defined with var are hoisted to the top and can be initialized at any

time.

Meaning: You can use the variable before it is declared:

Example

This is OK:

carName = "Volvo";

var carName;

Variables defined with const are also hoisted to the top, but not initialized.

Meaning: Using a const variable before it is declared will result in

a ReferenceError:

alert (carName);
const carName = "Volvo";

Lesson 14. JavaScript Syntax

JavaScript
Codewithsahal.com

Page 49 of 137
Phone: +447572126142

JavaScript syntax is the set of rules, how JavaScript programs are
constructed:

// How to create variables:

var x;

let y;

// How to use variables:

x = 5;

y = 6;

let z = x + y;

JavaScript Values

The JavaScript syntax defines two types of values:

 Fixed values
 Variable values

Fixed values are called Literals.

Variable values are called Variables.

JavaScript Literals

The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals:

10.50

1001

JavaScript
Codewithsahal.com

Page 50 of 137
Phone: +447572126142

2. Strings are text, written within double or single quotes:

"Mohamed Jama"

'Mohamed Jama'

JavaScript Variables

In a programming language, variables are used to store data values.

JavaScript uses the keywords var, let and const to declare variables.

An equal sign is used to assign values to variables.

In this example, x is defined as a variable. Then, x is assigned (given) the value

6:

let x;

x = 6;

JavaScript Operators

JavaScript uses arithmetic operators (+ - * /) to compute values:

(5 + 6) * 10

JavaScript uses an assignment operator (=) to assign values to variables:

let x, y;

x = 5;

y = 6;

JavaScript
Codewithsahal.com

Page 51 of 137
Phone: +447572126142

JavaScript Expressions

An expression is a combination of values, variables, and operators, which

computes to a value.

The computation is called an evaluation.

For example, 5 * 10 evaluates to 50:

5 * 10

Expressions can also contain variable values:

x * 10

The values can be of various types, such as numbers and strings.

For example, "Mohamed" + " " + "Jama", evaluates to "Mohamed Jama":

"Mohamed" + " " + "Jama"

JavaScript Keywords

JavaScript keywords are used to identify actions to be performed.

The let keyword tells the browser to create variables:

let x, y;

x = 5 + 6;

y = x * 10;

The var keyword also tells the browser to create variables:

JavaScript
Codewithsahal.com

Page 52 of 137
Phone: +447572126142

var x, y;

x = 5 + 6;

y = x * 10;

In these examples, using var or let will produce the same result.

JavaScript Comments

Not all JavaScript statements are "executed".

Code after double slashes // or between /* and */ is treated as a comment.

Comments are ignored, and will not be executed:

let x = 5; // I will be executed

// x = 6; I will NOT be executed

JavaScript Identifiers / Names

Identifiers are JavaScript names.

Identifiers are used to name variables and keywords, and functions.

The rules for legal names are the same in most programming languages.

A JavaScript name must begin with:

 A letter (A-Z or a-z)
 A dollar sign ($)

 Or an underscore (_)

Subsequent characters may be letters, digits, underscores, or dollar signs.

JavaScript
Codewithsahal.com

Page 53 of 137
Phone: +447572126142

Note

Numbers are not allowed as the first character in names.

This way JavaScript can easily distinguish identifiers from numbers.

JavaScript is Case Sensitive

All JavaScript identifiers are case sensitive.

The variables lastName and lastname, are two different variables:

let lastname, lastName;

lastName = "Mohamed";

lastname = "Jama";

JavaScript does not interpret LET or Let as the keyword let.

JavaScript and Camel Case

Historically, programmers have used different ways of joining multiple words

into one variable name:

Hyphens:

first-name, last-name, master-card, inter-city.

Hyphens are not allowed in JavaScript. They are reserved for subtractions.

Underscore:

first_name, last_name, master_card, inter_city.

JavaScript
Codewithsahal.com

Page 54 of 137
Phone: +447572126142

Upper Camel Case (Pascal Case):

FirstName, LastName, MasterCard, InterCity.

Lower Camel Case:

JavaScript programmers tend to use camel case that starts with a lowercase

letter:

firstName, lastName, masterCard, interCity.

Lesson 15. JavaScript Operators

Types of JavaScript Operators

There are different types of JavaScript operators:

 Arithmetic Operators

 Assignment Operators
 Comparison Operators

 Logical Operators
 Conditional Operators

 Type Operators
 Bitwise Operators

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic on numbers:

JavaScript
Codewithsahal.com

Page 55 of 137
Phone: +447572126142

Operator Description

+ Addition

- Subtraction

* Multiplication

** Exponentiation (ES2016)

/ Division

% Modulus (Division Remainder)

++ Increment

-- Decrement

https://www.w3schools.com/js/js_2016.asp

JavaScript
Codewithsahal.com

Page 56 of 137
Phone: +447572126142

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

Operator Example Same As

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

**= x **= y x = x ** y

The addition assignment operator (+=) adds a value to a variable.

JavaScript
Codewithsahal.com

Page 57 of 137
Phone: +447572126142

Adding JavaScript Strings

The + operator can also be used to add (concatenate) strings.

Example

let text1 = "Mohamed";

let text2 = "Jama";

let text3 = text1 + " " + text2;

The result of text3 will be:

Mohamed Jama

Example2:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Arithmetic</h1>

<h2>The += Operator</h2>

<p id="demo"></p>

<script>

var x = 10;

x += 5;

JavaScript
Codewithsahal.com

Page 58 of 137
Phone: +447572126142

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

The += assignment operator can also be used to add (concatenate) strings:

Example

let text1 = "What a very ";

text1 += "nice day";

The result of text1 will be:

What a very nice day

When used on strings, the + operator is called the concatenation operator.

Adding Strings and Numbers

Adding two numbers, will return the sum, but adding a number and a string will

return a string:

Example

let x = 5 + 5;

let y = "5" + 5;

let z = "Hello" + 5;

The result of x, y, and z will be:

JavaScript
Codewithsahal.com

Page 59 of 137
Phone: +447572126142

10

55

Hello5

Example 3:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Operators</h1>

<p>Adding a number and a string, returns a string.</p>

<p id="demo"></p>

<script>

let x = 5 + 5;

let y = "5" + 5;

let z = "Hello" + 5;

document.getElementById("demo").innerHTML =

x + "
" + y + "
" + z;

</script>

</body>

JavaScript
Codewithsahal.com

Page 60 of 137
Phone: +447572126142

</html>

If you add a number and a string, the result will be a string!

Lesson 16 JavaScript Comparison

Operators

Operator Description

== equal to

=== equal value and equal type

!= not equal

!== not equal value or not equal type

> greater than

JavaScript
Codewithsahal.com

Page 61 of 137
Phone: +447572126142

< less than

>= greater than or equal to

<= less than or equal to

? ternary operator

JavaScript Logical Operators

Operator Description

&& logical and

|| logical or

! logical not

JavaScript
Codewithsahal.com

Page 62 of 137
Phone: +447572126142

JavaScript Type Operators

Operator Description

typeof Returns the type of a variable

instanceof Returns true if an object is an instance of an

object type

JavaScript Bitwise Operators

Bit operators work on 32 bits numbers.

Any numeric operand in the operation is converted into a 32 bit number. The

result is converted back to a JavaScript number.

Operator Description Example Same as Result Decimal

& AND 5 & 1 0101 & 0001 0001 1

| OR 5 | 1 0101 | 0001 0101 5

JavaScript
Codewithsahal.com

Page 63 of 137
Phone: +447572126142

~ NOT ~ 5 ~0101 1010 10

^ XOR 5 ^ 1 0101 ^ 0001 0100 4

<< left shift 5 << 1 0101 << 1 1010 10

>> right shift 5 >> 1 0101 >> 1 0010 2

>>> unsigned right shift 5 >>> 1 0101 >>> 1 0010 2

JavaScript
Codewithsahal.com

Page 64 of 137
Phone: +447572126142

Lesson 17: JavaScript Data Types

JavaScript has 8 Datatypes

1. String
2. Number

3. Bigint
4. Boolean

5. Undefined
6. Null

7. Symbol
8. Object

The Object Datatype

The object data type can contain:

1. An object
2. An array

3. A date

Note

A JavaScript variable can hold any type of data.

JavaScript
Codewithsahal.com

Page 65 of 137
Phone: +447572126142

The Concept of Data Types

In programming, data types is an important concept.

To be able to operate on variables, it is important to know something about the

type.

Without data types, a computer cannot safely solve this:

let x = 16 + "Volvo";

Does it make any sense to add "Volvo" to sixteen? Will it produce an error or

will it produce a result?

JavaScript will treat the example above as:

let x = "16" + "Volvo";

Note

When adding a number and a string, JavaScript will treat the number as a

string.

Example 1

<!DOCTYPE html>

<html>

JavaScript
Codewithsahal.com

Page 66 of 137
Phone: +447572126142

<body>

<h2>JavaScript</h2>

<p>When adding a string and a number, JavaScript will treat the number as a string.</p>

<p id="demo"></p>

<script>

let x = "Volvo" + 16;

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

JavaScript Types are Dynamic

JavaScript has dynamic types. This means that the same variable can be used
to hold different data types:

Example 2

<!DOCTYPE html>

<html>

JavaScript
Codewithsahal.com

Page 67 of 137
Phone: +447572126142

<body>

<h2>JavaScript Data Types</h2>

<p>JavaScript has dynamic types. This means that the same variable can be used to hold different data

types:</p>

<p id="demo"></p>

<script>

let x; // Now x is undefined

x = 5; // Now x is a Number

x = "Mohamed"; // Now x is a String

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

Lesson 18: JavaScript Strings

JavaScript
Codewithsahal.com

Page 68 of 137
Phone: +447572126142

A string (or a text string) is a series of characters like "Mohamed Jama".

Strings are written with quotes. You can use single or double quotes:

Example 1

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Strings</h2>

<p>Strings are written with quotes. You can use single or double quotes:</p>

<p id="demo"></p>

<script>

let firstName = "Mohamed Jama";

let lastName = 'Sahal';

document.getElementById("demo").innerHTML =

firstName + "
" +

lastName;

JavaScript
Codewithsahal.com

Page 69 of 137
Phone: +447572126142

</script>

</body>

</html>

Note:

You can use quotes inside a string, as long as they don't match the quotes

surrounding the string:

Example 2

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Strings</h2>

<p>You can use quotes inside a string, as long as they don't match the quotes

surrounding the string:</p>

<p id="demo"></p>

<script>

let answer1 = "It's alright";

let answer2 = "He is called 'Mohamed'";

JavaScript
Codewithsahal.com

Page 70 of 137
Phone: +447572126142

let answer3 = 'He is called "Sahal"';

document.getElementById("demo").innerHTML =

answer1 + "
" +

answer2 + "
" +

answer3;

</script>

</body>

</html>

String Length

To find the length of a string, use the built-in length property:

Example 3

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<h2>The length Property</h2>

JavaScript
Codewithsahal.com

Page 71 of 137
Phone: +447572126142

<p>The length of the string is:</p>

<p id="demo"></p>

<script>

let text = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

document.getElementById("demo").innerHTML = text.length;

</script>

</body>

</html>

Escape Character

Because strings must be written within quotes, JavaScript will misunderstand

this string:

let text = "We are the so-called "Vikings" from the north.";

The string will be chopped to "We are the so-called ".

The solution to avoid this problem, is to use the backslash escape character.

The backslash (\) escape character turns special characters into string

characters:

JavaScript
Codewithsahal.com

Page 72 of 137
Phone: +447572126142

Code Result Description

\' ' Single quote

\" " Double quote

\\ \ Backslash

The sequence \" inserts a double quote in a string:

Example 4

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<p>The escape sequence \" inserts a double quote in a string.</p>

<p id="demo"></p>

<script>

JavaScript
Codewithsahal.com

Page 73 of 137
Phone: +447572126142

let text = "Waxaan tijaabinayaa sida ay \"ESCAPE Character\"u shaqeynayso.";

document.getElementById("demo").innerHTML = text;

</script>

</body>

</html>

Six other escape sequences are valid in JavaScript:

Code Result

\b Backspace

\f Form Feed

\n New Line

\r Carriage Return

\t Horizontal Tabulator

JavaScript
Codewithsahal.com

Page 74 of 137
Phone: +447572126142

\v Vertical Tabulator

The 6 escape characters above were originally designed to control

typewriters, teletypes, and fax machines. They do not make any sense

in HTML.

Breaking Long Code Lines

For best readability, programmers often like to avoid code lines longer than 80

characters.

If a JavaScript statement does not fit on one line, the best place to break it is
after an operator:

Example 5

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>

The best place to break a code line is after an operator or a comma.

</p>

JavaScript
Codewithsahal.com

Page 75 of 137
Phone: +447572126142

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

"Hello Sahalsoftware!";

</script>

</body>

</html>

Note:

You can also break up a code line within a text string with a single backslash:

Example 6

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<p>

You can break a code line within a text string with a backslash.

JavaScript
Codewithsahal.com

Page 76 of 137
Phone: +447572126142

</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello \

Sahalsoftware!";

</script>

</body>

</html>

The \ method is not the preferred method. It might not have universal support.

Some browsers do not allow spaces behind the \ character.

Note:

A safer way to break up a string, is to use string addition:

Example 7

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

JavaScript
Codewithsahal.com

Page 77 of 137
Phone: +447572126142

<p>The safest way to break a code line in a string is using string addition.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello " +

"Sahalsoftware!";

</script>

</body>

</html>

Note:

You cannot break up a code line with a backslash:

Example 8

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

JavaScript
Codewithsahal.com

Page 78 of 137
Phone: +447572126142

<p id="demo">You cannot break a code line with a \ backslash.</p>

<script>

document.getElementById("demo").innerHTML = \

"Hello Sahalsoftware.";

</script>

</body>

</html>

Lesson 19. JavaScript Numbers

All JavaScript numbers are stored as decimal numbers (floating point).

JavaScript has only one type of number. Numbers can be written with or
without decimals.

Example 1

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Numbers</h2>

<p>Numbers can be written with, or without decimals:</p>

JavaScript
Codewithsahal.com

Page 79 of 137
Phone: +447572126142

<p id="demo"></p>

<script>

let price1 = 34.00;

let price2 = 34;

let price3 = 3.14;

document.getElementById("demo").innerHTML =

price1 + "
" + price2 + "
" + price3;

</script>

</body>

</html>

Exponential Notation

Extra large or extra small numbers can be written with scientific (exponential)

notation:

Example 2

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Numbers</h2>

JavaScript
Codewithsahal.com

Page 80 of 137
Phone: +447572126142

<p>Extra large or extra small numbers can be written with scientific

(exponential) notation:</p>

<p id="demo"></p>

<script>

let y = 123e5;

let z = 123e-5;

document.getElementById("demo").innerHTML =

y + "
" + z;

</script>

</body>

</html>

Note

Most programming languages have many number types:

Whole numbers (integers):

byte (8-bit), short (16-bit), int (32-bit), long (64-bit)

Real numbers (floating-point):

float (32-bit), double (64-bit).

Javascript numbers are always one type:

double (64-bit floating point).

JavaScript
Codewithsahal.com

Page 81 of 137
Phone: +447572126142

Lesson 20. JavaScript BigInt (3)

- All JavaScript numbers are stored in a a 64-bit floating-point format.

- JavaScript BigInt is a new datatype (ES2020) that can be used to store
integer values that are too big to be represented by a normal
JavaScript Number.

- In JavaScript, all numbers are stored in a 64-bit floating-point format
(IEEE 754 standard).

- BigInt is the second numeric data type in JavaScript (after Number).

- With BigInt the total number of supported data types in JavaScript is 8

- Arithmetic between a BigInt and a Number is not allowed (type

conversion lose information).

- A BigInt can not have decimals.

- BigInt is supported in all browsers since September 2020

Example 1

<!DOCTYPE html>

<html>

<body>

<h1>JavScript Bigint</h1>

<p>A BigInt can not have decimals.</p>

https://www.w3schools.com/js/js_2020.asp

JavaScript
Codewithsahal.com

Page 82 of 137
Phone: +447572126142

<p id="demo"></p>

<p>You cannot perform math between a BigInt type and a Number type.</p>

<script>

let x = BigInt("123456789012345678901234567890");

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

Lesson 21: Booleans, Undefined & Null

 (4,5, & 6)

- Booleans can only have two values: true or false.

- in programming, you will need a data type that can only have one

of two values, like (YES / NO) (ON / OFF) (TRUE / FALSE).

- For this, JavaScript has a Boolean data type. It can only take the

values true or false.

JavaScript
Codewithsahal.com

Page 83 of 137
Phone: +447572126142

Example 1

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Booleans</h2>

<p>Booleans can have two values: true or false:</p>

<p id="demo"></p>

<script>

let x = 5;

let y = 5;

let z = 6;

document.getElementById("demo").innerHTML =

(x == y) + "
" + (x == z);

</script>

</body>

JavaScript
Codewithsahal.com

Page 84 of 137
Phone: +447572126142

</html>

Booleans are often used in conditional testing.

and so on.

Undefined

In JavaScript, a variable without a value, has the value undefined. The type is

also undefined.

Example 2

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Operators</h1>

<h2>The typeof Operator</h2>

<p>The value (and the data type) of a variable with no value is

undefined.</p>

<p id="demo"></p>

JavaScript
Codewithsahal.com

Page 85 of 137
Phone: +447572126142

<script>

let car;

document.getElementById("demo").innerHTML =

car

</script>

</body>

</html>

Any variable can be emptied, by setting the value to undefined. The type will

also be undefined.

Empty Values (Null)

An empty value has nothing to do with undefined.

An empty string has both a legal value and a type.

Example 3

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript</h2>

<p>An empty string has both a legal value and a type:</p>

JavaScript
Codewithsahal.com

Page 86 of 137
Phone: +447572126142

<p id="demo"></p>

<script>

let car = "";

document.getElementById("demo").innerHTML =

"The value is: " +

car + "
" +

"The type is: " + typeof car;

</script>

</body>

</html>

Lesson 22: Objects & Symbol (7 & 8)

JavaScript
Codewithsahal.com

Page 87 of 137
Phone: +447572126142

Symbol

The JavaScript Symbol is a primitive data type, just like Number, String,
Boolean, etc. It represents a unique identifier and can be used in various ways.

Symbols are used to create object properties, for example, when you want to
assign a unique identifier to an object.

- const mySymbol = Symbol();

JavaScript Objects

Real Life Objects, Properties, and Methods

In real life, a car is an object.

A car has properties like weight and color, and methods like start and stop:

- All cars have the same properties, but the property values differ

from car to car.

JavaScript
Codewithsahal.com

Page 88 of 137
Phone: +447572126142

- All cars have the same methods, but the methods are
performed at different times.

- JavaScript objects are written with curly braces {}.

- Object properties are written as name:value pairs, separated by
commas.

- You define (and create) a JavaScript object

JavaScript Objects

You have already learned that JavaScript variables are containers for data

values.

This code assigns a simple value (Fiat) to a variable named car:

let car = "NOHA";

Objects are variables too. But objects can contain many values.

This code assigns many values (Fiat, 500, white) to a variable named car:

Example 1

JavaScript
Codewithsahal.com

Page 89 of 137
Phone: +447572126142

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p id="demo"></p>

<script>

// Create an object:

const car = {

type:"Fiat",

model:"500",

color:"white"

};

// Display some data from the object:

document.getElementById("demo").innerHTML =

car.type + "
" +

car.model + "
" +

car.color ;

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 90 of 137
Phone: +447572126142

The values are written as name:value pairs (name and value separated by a
colon).

It is a common practice to declare objects with the const keyword.

Example 2

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p id="demo"></p>

<script>

const person = {

 firstName : "Abdirahman",

 age : 25

 };

document.getElementById("demo").innerHTML =

person.firstName + " waxa uu jiraa " + person.age + " sano.";

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 91 of 137
Phone: +447572126142

The object (person) in the example above has 2 properties: firstName, age.

Lesson 23: typeof Operator

You can use the JavaScript typeof operator to find the type of a JavaScript

variable.

The typeof operator returns the type of a variable or an expression:

Example 1 (String & Number)

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Operators</h1>

<h2>The typeof Operator</h2>

<p>The typeof operator returns the type of a variable or an expression.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

typeof "" + "
" +

JavaScript
Codewithsahal.com

Page 92 of 137
Phone: +447572126142

typeof "Mohamed" + "
" +

typeof "Abdirisak Mohamed" + "
" +

typeof 0 + "
" +

typeof 314 + "
" +

typeof 3.14 + "
" +

typeof (3) + "
" +

typeof (3 + 4);

</script>

</body>

</html>

Example 2 (BigInt)

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Numbers</h1>

<h2>BigInt typeof</h2>

<p>The typeof a BigInt is:</p>

<p id="demo"></p>

JavaScript
Codewithsahal.com

Page 93 of 137
Phone: +447572126142

<script>

let x = BigInt("9999999999999999");

document.getElementById("demo").innerHTML = typeof x;

</script>

</body>

</html>

Example 3 (undefined)

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Operators</h1>

<h2>The typeof Operator</h2>

<p>The value (and the data type) of a variable with no value is

undefined.</p>

<p id="demo"></p>

<script>

let car;

document.getElementById("demo").innerHTML =

JavaScript
Codewithsahal.com

Page 94 of 137
Phone: +447572126142

typeof car;

</script>

</body>

</html>

JavaScript – Part 2

Lesson 24. JavaScript Functions
A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when "something" invokes it (calls it).

JavaScript Function Syntax

A JavaScript function is defined with the function keyword, followed by a name,

followed by parentheses ().

Function names can contain letters, digits, underscores, and dollar signs (same
rules as variables).

The parentheses may include parameter names separated by commas:
(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside curly brackets: {}

function name(parameter1, parameter2, parameter3) {

 // code to be executed

}

Function parameters are listed inside the parentheses () in the function
definition.

JavaScript
Codewithsahal.com

Page 95 of 137
Phone: +447572126142

Function arguments are the values received by the function when it is
invoked.

Inside the function, the arguments (the parameters) behave as local variables.

Function Invocation

The code inside the function will execute when "something" invokes (calls) the

function:

 When an event occurs (when a user clicks a button)

 When it is invoked (called) from JavaScript code
 Automatically (self invoked)

Function Return

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will "return" to
execute the code after the invoking statement.

Functions often compute a return value. The return value is "returned" back to
the "caller":

Example 1

Calculate the product of two numbers, and return the result:

Why Functions?

With functions you can reuse code

JavaScript
Codewithsahal.com

Page 96 of 137
Phone: +447572126142

You can write code that can be used many times.

You can use the same code with different arguments, to produce different

results.

Example 1

Use External JavaScript

Function Salaan() {

 console.log("Salaan sare iga gudoon”)

}

Salaan()

Example 2

Use External JavaScript

function Salaan(name) {

 console.log('Salaan sare iga gudoon ' + name);

}

Salaan('Mohamed')

JavaScript
Codewithsahal.com

Page 97 of 137
Phone: +447572126142

Example 3
<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

let x = myFunction(4, 3);

document.getElementById("demo").innerHTML = x;

function myFunction(a, b) {

 return a * b;

}

</script>

</body>

JavaScript
Codewithsahal.com

Page 98 of 137
Phone: +447572126142

</html>

Lesson 25. Accessing Object Properties

You can access object properties in two ways:

- objectName.propertyName

- objectName["propertyName"]

Example A

person.lastName;

Example B

person["lastName"];

JavaScript objects are containers for named values called properties.

Example 1

<!DOCTYPE html>

<html>

<body>

JavaScript
Codewithsahal.com

Page 99 of 137
Phone: +447572126142

<h2>JavaScript Objects</h2>

<p id="demo"></p>

<script>

const person = {

 firstName : "Abdirahman",

 age : 25

 };

document.getElementById("demo").innerHTML =

person.firstName + " waxa uu jiraa " + person.age + " sano.";

</script>

</body>

</html>

Example 2

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p id="demo"></p>

JavaScript
Codewithsahal.com

Page 100 of 137
Phone: +447572126142

<script>

const person = {

 firstName : "Abdirahman",

 age : 25

 };

document.getElementById("demo").innerHTML =

person["firstName"] + " waxa uu jiraa " + person.age + " sano.";

</script>

</body>

</html>

Object Methods

Objects can also have methods.

Methods are actions that can be performed on objects.

Methods are stored in properties as function definitions.

Property Property Value

firstName Abdirahman

lastName Jama

JavaScript
Codewithsahal.com

Page 101 of 137
Phone: +447572126142

age 25

eyeColor white

fullName function() {return this.firstName + " " +

this.lastName;}

A method is a function stored as a property.

Example 3: Method

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p>An object method is a function definition, stored as a property value.</p>

<p id="demo"></p>

<script>

// Create an object:

JavaScript
Codewithsahal.com

Page 102 of 137
Phone: +447572126142

const person = {

 firstName: "John",

 lastName: "Doe",

 id: 5566,

 fullName: function() {

 return this.firstName + " " + this.lastName;

 }

};

// Display data from the object:

document.getElementById("demo").innerHTML = person.fullName();

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 103 of 137
Phone: +447572126142

Lesson 26 JavaScript Arrays

JavaScript arrays are written with square brackets.

Array items are separated by commas.

The following code declares (creates) an array called cars, containing three

items (car names):

Example 1

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const cars = ["Saab","Volvo","BMW"];

document.getElementById("demo").innerHTML = cars[0];

</script>

JavaScript
Codewithsahal.com

Page 104 of 137
Phone: +447572126142

</body>

</html>

Array indexes are zero-based, which means the first item is [0], second is [1],

Why Use Arrays?

If you have a list of items (a list of car names, for example), storing the cars in

single variables could look like this:

let car1 = "Saab";

let car2 = "Volvo";

let car3 = "BMW";

However, what if you want to loop through the cars and find a specific one? And
what if you had not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the

values by referring to an index number.

Creating an Array (1)

Using an array literal is the easiest way to create a JavaScript Array.

Syntax:

const array_name = [item1, item2, ...];

It is a common practice to declare arrays with the const keyword.

JavaScript
Codewithsahal.com

Page 105 of 137
Phone: +447572126142

Example

const cars = ["Saab", "Volvo", "BMW"];

Spaces and line breaks are not important. A declaration can span multiple lines:

Example

const cars = [

 "Saab",

 "Volvo",

 "BMW"

];

You can also create an array, and then provide the elements:

Example

const cars = [];

cars[0]= "Saab";

cars[1]= "Volvo";

cars[2]= "BMW";

Using the JavaScript Keyword new

The following example also creates an Array, and assigns values to it:

JavaScript
Codewithsahal.com

Page 106 of 137
Phone: +447572126142

Example

const cars = new Array("Saab", "Volvo", "BMW");

Lesson 27 Accessing Array Elements (2)

You access an array element by referring to the index number:

Example 1

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const cars = ["Saab", "Volvo", "BMW"];

document.getElementById("demo").innerHTML = cars[0];

</script>

JavaScript
Codewithsahal.com

Page 107 of 137
Phone: +447572126142

</body>

</html>

Note: Array indexes start with 0.

[0] is the first element. [1] is the second element.

Changing an Array Element (3)

This statement changes the value of the first element in cars:

Example 2

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const cars = ["Saab", "Volvo", "BMW"];

cars[0] = "Noha";

document.getElementById("demo").innerHTML = cars;

</script>

</body>

JavaScript
Codewithsahal.com

Page 108 of 137
Phone: +447572126142

</html>

Access the Full Array (4)

With JavaScript, the full array can be accessed by referring to the array name:

Example 3

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Arrays</h1>

<p id="demo"></p>

<script>

const cars = ["Saab", "Volvo", "BMW"];

document.getElementById("demo").innerHTML = cars;

</script>

JavaScript
Codewithsahal.com

Page 109 of 137
Phone: +447572126142

</body>

</html>

Accessing the Last Array Element (5)

Example 4

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

document.getElementById("demo").innerHTML = fruits[fruits.length-1];

</script>

</body>

</html>

Lesson 28. JavaScript Array Methods

Array length

Array toString()

Array join()

Array delete()

JavaScript
Codewithsahal.com

Page 110 of 137
Phone: +447572126142

Array pop()
Array push()

Array shift()
Array unshift()

Array concat()
Array flat()

Array splice()
Array slice()

JavaScript Array length (1)

The length property returns the length (size) of an array:

Example 1

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

let size = fruits.length;

document.getElementById("demo").innerHTML = size;

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 111 of 137
Phone: +447572126142

JavaScript Array toString() (2)

The JavaScript method toString() converts an array to a string of (comma

separated) array values.

Example 2

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

document.getElementById("demo").innerHTML = fruits.toString();

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 112 of 137
Phone: +447572126142

The join() method also joins all array elements into a string. (3)

It behaves just like toString(), but in addition you can specify the separator:

Example 3

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

document.getElementById("demo").innerHTML = fruits.join(" * ");

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 113 of 137
Phone: +447572126142

Popping and Pushing

When you work with arrays, it is easy to remove elements and add new

elements.

This is what popping and pushing is:

Popping items out of an array, or pushing items into an array.

JavaScript Array pop() (4)

The pop() method removes the last element from an array:

Example 4

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

fruits.pop();

document.getElementById("demo").innerHTML = fruits;

</script>

</body>

JavaScript
Codewithsahal.com

Page 114 of 137
Phone: +447572126142

</html>

JavaScript Array push() (5)

The push() method adds a new element to an array (at the end):

Example 5

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

fruits.push("Avocado");

document.getElementById("demo2").innerHTML = fruits;

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 115 of 137
Phone: +447572126142

Lesson 29. JavaScript Sorting Arrays

Sorting an Array

The sort() method sorts an array alphabetically:

Example 1

<!DOCTYPE html>

<html>

<body>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

document.getElementById("demo1").innerHTML = fruits;

fruits.sort();

document.getElementById("demo2").innerHTML = fruits;

</script>

JavaScript
Codewithsahal.com

Page 116 of 137
Phone: +447572126142

</body>

</html>

Reversing an Array

The reverse() method reverses the elements in an array:

Example 2

<!DOCTYPE html>

<html>

<body>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

const fruits = ["Banana", "Orange", "Apple", "Mango"];

document.getElementById("demo1").innerHTML = fruits;

fruits.reverse();

document.getElementById("demo2").innerHTML = fruits;

</script>

</body>

JavaScript
Codewithsahal.com

Page 117 of 137
Phone: +447572126142

</html>

Numeric Sort

By default, the sort() function sorts values as strings.

This works well for strings ("Apple" comes before "Banana").

If numbers are sorted as strings, "25" is bigger than "100", because "2" is

bigger than "1".

Because of this, the sort() method will produce incorrect result when sorting

numbers.

You can fix this by providing a compare function:

Example 3

<!DOCTYPE html>

<html>

<body>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

const points = [40, 100, 1, 5, 25, 10];

document.getElementById("demo1").innerHTML = points;

points.sort(function(a, b){return a - b});

document.getElementById("demo2").innerHTML = points;

JavaScript
Codewithsahal.com

Page 118 of 137
Phone: +447572126142

</script>

</body>

</html>

Use the same trick to sort an array descending:

Example 4

<!DOCTYPE html>

<html>

<body>

<p>Sort the array in descending order:</p>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

const points = [40, 100, 1, 5, 25, 10];

document.getElementById("demo1").innerHTML = points;

points.sort(function(a, b){return b - a});

document.getElementById("demo2").innerHTML = points;

JavaScript
Codewithsahal.com

Page 119 of 137
Phone: +447572126142

</script>

</body>

</html>

Lesson 30. if, else, and else if

Conditional statements are used to perform different actions based on different

conditions.

Conditional Statements

Very often when you write code, you want to perform different actions for

different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is

true

 Use else to specify a block of code to be executed, if the same condition

is false

 Use else if to specify a new condition to test, if the first condition is

false

 Use switch to specify many alternative blocks of code to be executed

JavaScript
Codewithsahal.com

Page 120 of 137
Phone: +447572126142

The if Statement

Use the if statement to specify a block of JavaScript code to be executed if a

condition is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate a

JavaScript error.

Example 1

Make a "Good day" greeting if the hour is less than 18:00:

The result of greeting will be:

Good day

<!DOCTYPE html>

<html>

<body>

<p id="demo">Good Evening!</p>

<script>

if (new Date().getHours() < 18) {

 document.getElementById("demo").innerHTML = "Good day!";

}

JavaScript
Codewithsahal.com

Page 121 of 137
Phone: +447572126142

</script>

</body>

</html>

The else Statement

Use the else statement to specify a block of code to be executed if the condition

is false.

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

Example 2

If the hour is less than 18, create a "Good day" greeting, otherwise "Good

evening":

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const hour = new Date().getHours();

let greeting;

if (hour < 18) {

 greeting = "Good day";

} else {

JavaScript
Codewithsahal.com

Page 122 of 137
Phone: +447572126142

 greeting = "Good evening";

}

document.getElementById("demo").innerHTML = greeting;

</script>

</body>

</html>

The else if Statement

Use the else if statement to specify a new condition if the first condition is

false.

Syntax

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and

condition2 is true

} else {

 // block of code to be executed if the condition1 is false and

condition2 is false

}

Example 3

If time is less than 10:00, create a "Good morning" greeting, if not, but time is

less than 20:00, create a "Good day" greeting, otherwise a "Good evening":

<!DOCTYPE html>

<html>

JavaScript
Codewithsahal.com

Page 123 of 137
Phone: +447572126142

<body>

<p id="demo"></p>

<script>

const time = new Date().getHours();

let greeting;

if (time < 10) {

 greeting = "Good morning";

} else if (time < 20) {

 greeting = "Good day";

} else {

 greeting = "Good evening";

}

document.getElementById("demo").innerHTML = greeting;

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 124 of 137
Phone: +447572126142

Lesson 31. Five conditions

if, else, and else if

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

const time = new Date().getHours();

let greeting;

if (time < 10) {

 greeting = "Subax wanaagsan";

} else if (time < 15) {

 greeting = "Duhur wanaagsan";

} else if (time < 18) {

 greeting = "Casar Wanaagsan";

} else if (time < 22) {

JavaScript
Codewithsahal.com

Page 125 of 137
Phone: +447572126142

 greeting = "Fiid wanaagsan";

} else {

 greeting = "Habeen wanaagsan";

}

document.getElementById("demo").innerHTML = greeting;

</script>

</body> </html>

Lesson 32. JavaScript Switch Statement

The switch statement is used to perform different actions based on different

conditions.

Syntax

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

This is how it works:

 The switch expression is evaluated once.
 The value of the expression is compared with the values of each case.

 If there is a match, the associated block of code is executed.
 If there is no match, the default code block is executed.

JavaScript
Codewithsahal.com

Page 126 of 137
Phone: +447572126142

The break Keyword

When JavaScript reaches a break keyword, it breaks out of the switch block.

This will stop the execution inside the switch block.

It is not necessary to break the last case in a switch block. The block breaks

(ends) there anyway.

Note: If you omit the break statement, the next case will be executed even if

the evaluation does not match the case.

The default Keyword

The default keyword specifies the code to run if there is no case match:

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

let text;

switch (new Date().getDay()) {

 case 6:

 text = "Today is Saturday";

 break;

 case 0:

JavaScript
Codewithsahal.com

Page 127 of 137
Phone: +447572126142

 text = "Today is Sunday";

 break;

 default:

 text = "Looking forward to the Weekend";

}

document.getElementById("demo").innerHTML = text;

</script>

</body>

</html>

Lesson 33. JavaScript Loops (1)

Loops can execute a block of code a number of times. If you want to run the

same code over and over again, each time with a different value.

Different Kinds of Loops

JavaScript supports different kinds of loops:

 for - loops through a block of code a number of times

 for/in - loops through the properties of an object

 for/of - loops through the values of an iterable object

 while - loops through a block of code while a specified condition is true

 do/while - also loops through a block of code while a specified condition

is true

JavaScript
Codewithsahal.com

Page 128 of 137
Phone: +447572126142

The For Loop

The for statement creates a loop with 3 optional expressions:

for (expression 1; expression 2; expression 3) {

 // code block to be executed

}

Expression 1 is executed (one time) before the execution of the code block.

Expression 2 defines the condition for executing the code block.

Expression 3 is executed (every time) after the code block has been executed.

Example 1

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

let text = "";

for (let i = 0; i < 5; i++) {

JavaScript
Codewithsahal.com

Page 129 of 137
Phone: +447572126142

 text += "The number is " + i + "
";

}

document.getElementById("demo").innerHTML = text;

</script>

</body>

</html>

From the example above, you can read:

Expression 1 sets a variable before the loop starts (let i = 0).

Expression 2 defines the condition for the loop to run (i must be less than 5).

Expression 3 increases a value (i++) each time the code block in the loop has
been executed.

Expression 1

Normally you will use expression 1 to initialize the variable used in the loop (let

i = 0).

This is not always the case. JavaScript doesn't care. Expression 1 is optional.

You can initiate many values in expression 1 (separated by comma):

JavaScript
Codewithsahal.com

Page 130 of 137
Phone: +447572126142

Example 2

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript For Loop</h2>

<p id="demo"></p>

<script>

const cars = ["BMW", "Volvo", "Saab", "Ford"];

let i, len, text;

for (i = 0, len = cars.length, text = ""; i < len; i++) {

 text += cars[i] + "
";

}

document.getElementById("demo").innerHTML = text;

</script>

</body>

</html>

JavaScript
Codewithsahal.com

Page 131 of 137
Phone: +447572126142

And you can omit expression 1 (like when your values are set before the loop

starts):

Example 3

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript For Loop</h2>

<p id="demo"></p>

<script>

const cars = ["BMW", "Volvo", "Saab", "Ford"];

let i = 2;

let len = cars.length;

let text = "";

for (; i < len; i++) {

 text += cars[i] + "
";

}

JavaScript
Codewithsahal.com

Page 132 of 137
Phone: +447572126142

document.getElementById("demo").innerHTML = text;

</script>

</body>

</html>

Expression 2

Often expression 2 is used to evaluate the condition of the initial variable.

This is not always the case. JavaScript doesn't care. Expression 2 is also

optional.

If expression 2 returns true, the loop will start over again. If it returns false, the

loop will end.

If you omit expression 2, you must provide a break inside the loop. Otherwise

the loop will never end. This will crash your browser.

Expression 3

Often expression 3 increments the value of the initial variable.

This is not always the case. JavaScript doesn't care. Expression 3 is optional.

Expression 3 can do anything like negative increment (i--), positive increment (i

= i + 15), or anything else.

JavaScript
Codewithsahal.com

Page 133 of 137
Phone: +447572126142

Expression 3 can also be omitted (like when you increment your values inside
the loop):

Example 4

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript For Loop</h2>

<p id="demo"></p>

<script>

const cars = ["BMW", "Volvo", "Saab", "Ford"];

let i = 0;

let len = cars.length;

let text = "";

for (; i < len;) {

 text += cars[i] + "
";

JavaScript
Codewithsahal.com

Page 134 of 137
Phone: +447572126142

 i++;

}

document.getElementById("demo").innerHTML = text;

</script>

</body>

</html>

Lesson 34. JavaScript While Loop

The While Loop

The while loop loops through a block of code as long as a specified condition is

true.

JavaScript
Codewithsahal.com

Page 135 of 137
Phone: +447572126142

Syntax

while (condition) {

 // code block to be executed

}

Example 1

In the following example, the code in the loop will run, over and over again, as

long as a variable (i) is less than 10:

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

let text = "";

let i = 1;

while (i < 10) {

 text += "
The number is " + i;

 i++;

}

document.getElementById("demo").innerHTML = text;

JavaScript
Codewithsahal.com

Page 136 of 137
Phone: +447572126142

</script>

</body>

</html>

If you forget to increase the variable used in the condition, the loop will never
end. This will crash your browser.

The Do While Loop

The do while loop is a variant of the while loop. This loop will execute the code

block once, before checking if the condition is true, then it will repeat the loop

as long as the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

Example 2

The example below uses a do while loop. The loop will always be executed at

least once, even if the condition is false, because the code block is executed

before the condition is tested:

<!DOCTYPE html>

<html>

<body>

JavaScript
Codewithsahal.com

Page 137 of 137
Phone: +447572126142

<p id="demo"></p>

<script>

let text = ""

let i = 1;

do {

 text += "
The number is " + i;

 i++;

}

while (i < 10);

document.getElementById("demo").innerHTML = text;

</script>

</body>

</html>

